

Electrolysis and Material Storage of Hydrogen Gas

Team Members

Hannah Spiller Design Team Lead

Dylan Astrup Lead Human Factors Engineer

Titan Berson Lead Interface Engineer

Grant Carrabine Lead Electrolysis Engineer

Jacob Wolf Lead Piping Engineer

Tesla Alford III Lead Extraction Engineer

What Embry-Riddle Has

Wind Tunnel

Robotics Lab

Propulsion Lab

?

Embry-Riddle does not have

Energy Labs

Energy Classrooms

Viewable Demonstrations

?

.....

\$

DOE Research into Hydrogen

The DOE is researching multiple uses for hydrogen gas, producing the need for more hydrogen. This creates interest within Embry-Riddle to create an alternative energy demonstrator that teaches the general public about hydrogen fuel and storage.

Funding Notice: Clean Hydrogen Production, Storage, Transport and Utilization to Enable a Net-Zero Carbon Economy

Amount: \$32 million

Generate and Store Hydrogen

ERH2's purpose is to create a demonstrator to generate and store hydrogen.

Benefits of ERH2 System

?

.....

\$

Scalable Production Rate Sole Source of H² on Campus

The ERH2 System

?

Process Flow Diagram

Simplified PFD

?

Critical System Requirements

Produce 0.02 grams of hydrogen over 10 minutes

Store 0.04 grams of hydrogen

Safely extract hydrogen from system

Internal components visible

Electrolysis Equation

$2H_2O \longrightarrow 2H_2 + O_2$

.....

Hydrogen Production Requirement

 $\frac{Power wanted(kW) * Time(sec.)}{Percent Eff of fuel cell * Lower heating value \left(\frac{KJ}{Kg}\right)} = Amount needed(g H_2)$

$$\frac{.001kW * 600 (sec.)}{0.25 * 120,000 \left(\frac{KJ}{Kg}\right)} = .02 (g H_2)$$

?

Electrolysis

Electrolysis Breakdown

?

\$

Mesh Section-View

?

.....

\$

Power Supply

?

Faraday's Law of Electrolysis Rate of H2 Production

(ERH₂

Max theoretical Current Valence * Molar weight of H

$$\frac{20(C)}{1(s)} * \frac{600(s)}{96,485(C)} * \frac{1(mol H_2)}{2(mol e^-)} * \frac{2.007(g H_2)}{1(mol H_2)}$$

 $= 0.125 (g/10min H_2)$

?

Ē

\$

Electrolysis Power Circuit

?

Ê

.11

\$

.....

Requirement	Design	Expected Performance	Verification
	The hydrogen and oxygen will be		
6.1	separated at creation	100%	Fuel Cell Runs
	The system was designed to be		
	sandwiched together into different	Life of bolts	
6.2	layers making it replaceable	used	It will come apart
		The life span	
6.3	Ability to bolt together	of seals	It will come apart

?

Electrolysis Summary

		Expected	
Requirement	Design	Performance	Verification
6.4	Will be made of plastic	Nonconductive	Voltmeter
6.5	Will use 12-gauge wire	Rated for 20 amp	National Electrical code
6.6	Will set power supply to max 20 amps	Max 20 amps	Power supply read out
6.7	Have and on off switch	100%	System turns off

?

Material Storage

System Requirements

"The system must store 0.04 grams of hydrogen gas."

4.1

"The material storage efficiency (hydrogen in vs. hydrogen out) must be at least 50%."

?

Lithium-Doped Graphitic Carbon Nitride $[Li_2C_4N_3/Li_2C_4N_4]$

?

Ĉ

hes

Nanotubes microtubes

Porous

structures

Nanoparticles or

quantum dots

Sheets/layered

structures

Molecular Level

Naked Eye

ERH₂

Subsystem Definition

The material storage subsystem is made up of a graduated bottle holding graphitic carbon nitride and rubber stopper to seal the bottle.

Graduated Bottle

?

Ĉ

.....

\$

Equations

$$E_{Material} = \frac{m_{H_2out} - m_{H_2in}}{m_{H_2in}} \qquad m_{Stored} = m_{initial} - m_{final} \qquad \%_{wtH_2} = \frac{m_{Stored}}{m_{final}} * 100$$

Where:

 $E_{Material} =$ Material Efficiency $m_{H_2in} =$ Mass of hydrogen into the material storage system $m_{H_2out} =$ Mass of hydrogen leaving the material storage subsystem. $m_{Stored} =$ Mass of hydrogen stored in material storage $m_{initial} =$ Mass of the storage before hydrogen is introduced $m_{final} =$ Final mass of the material after hydrogen loading $\%_{wtH_2} =$ Weight percentage of hydrogen in the material storage

7.1 Release

RELEASE RATE TESTING SCALABLE MASS TO INCREASE HYDROGEN BEING RELEASED

VALVE TO CONTAIN HYDROGEN IF SLOW RELEASE

7.2 Material Capacity

"...it was found that the gravimetric and volumetric densities of hydrogen in both $Li_2C_4N_3$ and $Li_2C_4N_4$ were greater than 10 wt% and 100 g/L respectively" [Wu et al.]

7.3 Material Needed

4% yield Urea to Graphitic Carbon Nitride

https://www.google.com/search?q=urea&rlz=1C1GCEJ_enUS1034&source=lnms&tbm=isch&s a=X&ved=2ahUKEwjL07Cd_dn7AhVxBEQIHctsDisQ_AUoAXoECAEQAw&biw=1920&bih=969#im grc=uJswUICxh-9eIM

https://www.homesciencetools.com/product/ lithium-chloride-30-g/

Storage Summary

Requirement	Design	Expected Performance	Verification
	Extraction heats material to release	Releases at	
7.1	temperature	per 10 minutes	Runs the fuel cell
		Capacity of 10%	Numerically, Greater than 2%
7.2	Doped graphitic carbon nitride	wt hydrogen	Testing
_7 3	2 grams of Granhitic Carbon Nitride	Synthesize 50 grams for 4% yield	Greater than 2 grams
7.2	Doped graphitic carbon nitride 2 grams of Graphitic Carbon Nitride	wt hydrogen Synthesize 50 grams for 4% yield	Testing Greater than 2 grams

?

.....

\$

System Interfaces

System Requirements

"all subsystem interfaces must be sealed."

Detecting Leaks

ERH2 will follow ASHRAE Bubble Method under Chapter 29.9 Leak Detection in the 2017 edition ASHRAE Handbook.

Fast leakage test – Unitem Wrocław (unitemmachines.com)

37

?

.....

\$

Extraction

System Requirements

"The system must allow for safe extraction of hydrogen gas without risk of major leaks."

"The material storage to fuel cell system must be able to run for 10 minutes."

?

Heating Element – Nichrome Wire

Thermal Insulation:

Aerogel - 650 °C

Target Temperature: 300°C Maximum Temperature: 350°C

- Type: Resistance Wire
- Material: Nichrome 80 Alloy (nom. 80% Ni, 20% Cr)

 Specification: ASTM B267 Temperature Rating: 1177°C (2150°F)

-Remington Industries

?

\$

Heat Loss Calculations

Energy Loss, 10ft. Of wire @ 300°C: 2.683W

Heat Rate Out = Conduction loss + Convection loss Conduction loss = $h_{air}A_1\Delta T$ Convection loss = $-kA_2\Delta T$

 h_{air} = 2.5 for still air A₁= .0038m² (50% surface area) A₂= .0019m² (25% surface area)

$$K=11.3\frac{W}{m*^{\circ}K}$$
$$\Delta T=280^{\circ}$$

?

Power Input Calculations

Voltage Requirement: 2.402V Amperage: 1.118A

$$Q = V^2/R \quad V = I * R$$

$$Q = 2.683W$$
 $R = .705 \frac{\Omega}{m} * 3.048m (10ft.)$

?

Vessel Pressure

• PV=nRT

V = 1.1L T = 300°C R =
$$287 \frac{J}{kg * K}$$

- Maximum Vessel Pressure: 40.43psia
 - Champagne Bottle: 90psia
 - Soda Can: 30psia

?

.....

\$

Extraction Summary

Requirement	Design	Expected Performance	Verification
9.1	Nichrome wire achieves steady state temperature of 300°C	Hydrogen release from storage medium	Fuel cell produces electricity
9.2	Voltage supplied to Nichrome wire ≈ 2.4V	Steady state temp. < 350°C	Thermal Camera (Propulsion Lab)

?

Piping

?

Heat Transfer Analysis

- 1. Use a 6in long pipe at constant 100°C that reduces internal gas temperature from 300°C to 150°C to determine flow regime.
- 2. Analyze 0.0001in long sections where pipe is average temperature of internal and external air.

Piping Requirement Summary

Hard Copper Pipe 0.5"OD x 0.05" Wall Thickness x 2.63" Long PTFE Tubing 0.31"OD x 0.03" Wall Thickness x 2' Long

Requirement	Design	Expected Performance	Verification
10.1	PTFE tubing and copper pipe.	Transportation of hydrogen gas	Pressure gauge, mass of material storage, operation of fuel cell
10.2	Material chosen to withstand pressures.	No leaks	Bubble method
10.3	Copper piping sufficiently transfers heat.	Temperature reduced to 50°C at diverting valve	Thermal imaging

?

.....

\$

Interactive User Interface (IUI)

11.1 Pressure Gauge

0-30 inWC (0-1.08 psi)

?

.....

\$

Governing Equations

PV = nRT

Where:

P = Absolute pressure of the gas (KPa)

V = Volume of the gas (L)

n = Amount of the gas (g)

R =Ideal gas constant (KJ/Kg*K)

T = Absolute temperature of the gas (K)

In. wc	PSI	Grams of Hydrogen
0	0	0
1	0.0360912	0.000247124
2	0.0721824	0.000494249
3	0.1082736	0.000741373
4	0.1443648	0.000988497
5	0.180456	0.001235621
6	0.2165472	0.001482746
7	0.2526384	0.00172987
8	0.2887296	0.001976994
9	0.3248208	0.002224119
10	0.360912	0.002471243
11	0.3970032	0.002718367
12	0.4330944	0.002965492
13	0.4691856	0.003212616
14	0.5052768	0.00345974
15	0.541368	0.003706864
16	0.5774592	0.003953989
17	0.6135504	0.004201113
18	0.6496416	0.004448237
19	0.6857328	0.004695362
20	0.721824	0.004942486
21	0.7579152	0.00518961
22	0.7940064	0.005436735
23	0.8300976	0.005683859
24	0.8661888	0.005930983
25	0.90228	0.006178107
26	0.9383712	0.006425232
27	0.9744624	0.006672356
28	1.0105536	0.00691948
29	1.0466448	0.007166605
30	1.082736	0.007413729

11.2 Mass Measurement

Chemistry lab scale to measure storage system mass

±0.0005 accuracy

?

11.3 Infographic

IUI Summary

Requirement	Design	Expected Performance	Verification
11.1	0-30 inWC Pressure Gauge	Display accurate pressure of system	Visual Inspection
11.2	Chemistry lab digital scale	Display mass of hydrogen in storage system	Visual Inspection
11.3	Hydrogen Economy Infographic	Inform about hydrogen economy	Visual Inspection
11.4	Pressure gauge and scale have measurement displays	Display measurements	Visual Inspection
11.5	Pressure gauge and scale have English unit on the displays	English Units	Visual Inspection

Risk Matrix - Before Mitigation

Asset or Operation at Risk	Hazard	Scenario	Opportunties for Prevention or Mitigation	Probability	Overall Hazard Rating
Overall System	Explosion	Hydrogen Leak, normal operation	Sealant	Likely	4A
Electrolysis	Electrocution	Short Circuit	Insulator	Seldom	2C
Electrolysis	Fire	Excess Oxygen	Planned Dispersion	Likely	4B
Electrolysis	Ozone	Ozone production	Capture	Improbable	1C
Heating Element	Burns	Contact with Heating Element	Warning Sign	Occasional	3C

		R	isk Severit	у	_
Risk Probability	Catastrophic A	Critical B	Moderate C	Minor D	Negligible E
5 – Frequent	5A	5B	5C	5D	5E
4 – Likely	4A	4B	4C	4D	4E
3 - Occasional	ЗA	3B	зC	3D	ЗE
2 – Seldom	2A	2B	2C	2D	2E
1 – Improbable	1A	1B	1C	1D	1E

Risk Matrix – After Mitigation

Asset or Operation at Risk	Hazard	Hazard Scenario Probability		Overall Hazard Rating
Overall System	Explosion	Hydrogen Leak, normal Improbable		18
Electrolysis	Electrocution	Short Circuit Improbable		1C
Electrolysis	Fire	Excess Oxygen	Improbable	1B
Electrolysis	Ozone	Ozone production Improbable		1C
Heating Element	Burns	Contact with Heating Element Seldom		2C

		R	isk Severit	у	
Risk Probability	Catastrophic A	Critical B	Moderate C	Minor D	Negligible E
5 – Frequent	5A	5B	5C	5D	5E
4 – Likely	4A	4B	4C	4D	4E
3 - Occasional	ЗA	3B	зC	3D	3E
2 – Seldom	2A	2B	2C	2D	2E
1 – Improbable	1A	1B	1C	1D	1E

Budget

ltem		Cost
Shirts		\$150.00
Urea		\$20.00
lithium Chloride 30grams		\$17.90
Plexiglass		\$84.56
Pressure gauge		\$35.65
Mesh X 2		\$22.00
PTFE Tubing x 25ft		\$62.25
F-F Thread Adapter x2		\$19.12
Bolts		\$7.60
Copper Pipe (2ft)		\$5.49
Barbed T fitting x 2		\$24.28
Barbed Fitting x3		9.02
Graduated Bottle		91.64
Nichrome Wire 20gauge x 50ft		\$12.00
Solder		\$30
Rubber Plug		\$10.42
Rubber Tape (25ft)		18.37
Diverting Valve		123.84
Epoxy's		\$30
nuts		\$2.20
Other Plastic		\$88.04
Power Supply		\$289.99
Total		
	\$1,154.37	

Schedule

ERH2

Embry-Riddle Hy	/drogen										
Detail											
Project start date:	1/10/2023					Scrolling increment	: 40				
Milestone marker:	1	►			February		March	ı		Apr	il
					19 20 21 22 23 24 25	26 27 28 1 2	3 4 5 6	7 8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23 24 25	26 27 28 29 30 31 1 2	3 4 5 6 7 8 9 10 11
Milestone description	Assigned to	Progress	Start	Days	S M T W T F S	S M T W T	FSSM	T W T F S S M T W	T F S S M T W T F S	S M T W T F S S	M T W T F S S M T
Build											
Electrolysis		0%	2/13/2023	18							
Plumbing		0%	3/6/2023	14							
Valves and Seals		0%	3/20/2023	11							
Control Elements		0%	4/1/2023	7							

?

\$

Acknowledgements

- Dr. Karl Heine
- Dr. Johnathan Adams
- Dr. Richard DiPietro
- Dr. Istemi Ozsoy
- Dr. David Lanning
- AXFAB Staff
- Taylor Spiller

Additional Slides

- <u>Requirements</u>
- Generation
 - Natural Gas
 - Photobiological
 - <u>Microbial Biomass conversion</u>
- Storage
 - <u>Physical</u>
 - Material
- Equations
- Graphic Design
- <u>Schedule</u>

?

.....

\$

.....

Requirements Matrix

		Design Elements						
	Function 1.0	Electrolysis Device	Material-based Storage	Fuel Cell	Laws			
	1.1							
	1.1.1							
	1.2							
	1.3							
	Safety 2.0							
	2.1							
	2.2							
ts	Education 3.0							
	3.1							
Ĕ	3.1.1							
er	3.1.2.1							
<u> </u>	3.1.2.2							
	3.1.3							
e e	3.1.4							
	Performance 4.0							
	4.1							
	4.1.1							
	4.2							
	4.2.1							
	4.3							
	Human Factor 5.0							
	5.1							
	5.2							

Generation - Natural Gas

Methane Resource Methane is collected from a source (usually from natural gas)

Steam-Methane Reforming

 High temperature steam (at 700-1,000 °C) is added to the methane gas

Hydrogen Extraction Hydrogen gas is extracted from the steam-methane mix from an added catalyst ?

.11

\$

Generation - Photobiological

Generation - Microbial Biomass Conversion

ERH₂

?

Storage – Physical Storage

?

Ê

.....

\$

Storage – Material Storage

Adsorbtion

Hydrogen is Stuck to the Compound's Surface Absorption

Hydrogen is Encased by the Compound

?

.....

\$

Equations – Area of Mesh

 $64(in^2) * 0.66 = 42.24(in^2)$

.....

?

Õ

Equations – Max Current

$$\frac{0.084(A)}{1(cm^2)} * \frac{1(cm^2)}{0.155(in^2)} * 42.24(in^2) = 22.89(A)$$

 \mathbf{C}

.....

\$

Equations – Rate of O2 Production

$\frac{22.89\,(C)}{1\,(s)}*\frac{600\,(s)}{96,485\,(C)}*\frac{1\,(mol\,O_2)}{4\,(mol\,e^-)}*\frac{31.998\,(g\,O_2)}{1\,(mol\,O_2)}$

 $= 1.139 (g O_2)$

.....

?

Õ

Type of Interface

Misc. Interfacing Table

Name

•		

Interface Point

_	_	

Plastic Epoxy	Plastic Epoxy Putty	\$5.83 per 2 ounces	Electrolyzer to piping connection	
Electrical Epoxy	Fire Barrier Sealant	\$11.28 per 10.3 ounces	Electrical Epoxy for Electrolyzer	
Gasket Tape	NEMA 12	\$15.55 per 10 feet	Internal Electrolyzer Interfaces	
Pipe Gasket	Gasket	\$0.79 each	Threaded Connections	
Plastic Epoxy	J-B Weld	\$9.76 per 2 ounces	Electrolyzer Water Storage Casing	
Threaded Connections	Made Inhouse	1/2 inch Aluminum Stock	To be Decided	

Price

\$5.83 per 2 ounces

Schedule of Project

• Date tracking Gantt ERH2 (version 1).xlsb.xlsx

Milestone description	Assigned to	Progress	Start	Days
Request for Proposals				
Requirements		100%	8/29/2022	4
Deadlines		100%	8/29/2022	3
Budget		100%	8/29/2022	2
Schedule		100%	8/29/2022	1
Design Concept Review				
Draft		100%	9/20/2022	15
Slide Design Review		100%	10/3/2022	9
Design Concept Proposal				
Front Matter		100%	9/12/2022	10
Similar Systems		100%	9/12/2022	10
Potential Risks		100%	9/12/2022	10
System Concept		100%	9/9/2022	19
Trade Studies		100%	9/20/2022	6
Budget		100%	9/19/2022	7
Energyland Layout		100%	9/27/2022	4
Conclusions		100%	9/12/2022	14
Draft		100%	9/9/2022	26
System Drawings		100%	9/20/2022	6
Schedule		100%	9/12/2022	13

MTWTFSSM

?

SMTW

\$